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Abstract
Background and objectives: Insulin resistance and hyperinsulinemia in type 2 diabetes mellitus induced dyslipidemia. This 
study aims to investigate the abrogative role of Terminalia catappa (T. catappa) leaf aqueous extract (TCLAE) on diabetes-induced 
dyslipidaemia in type 2 diabetic rats.

Methods: Diabetic rats were induced by fat-rich feed for eight weeks and intraperitoneal streptozotocin (STZ, 30 mg/kg) injec-
tion, while glibenclamide (10 mg/kg) and TCLAE-graded doses were orally administered for four weeks. Then, the biomarkers 
for diabetes, liver function, lipid profile, cardiovascular indices, and liver histology were measured, in addition to the hepatic 
expression of some lipid metabolic genes.

Results: TCLAE reduced the diabetes-induced fasting blood glucose, weight loss, plasma insulin, alanine transaminase, biliru-
bin, cholesterol (CHOL), triglyceride (TRIG), low-density lipoprotein-CHOL and low-density lipoprotein-TRIG. TCLAE also 
decreased the abnormal cardiovascular indices. TCALE significantly enhanced the high-density lipoprotein-CHOL, the expres-
sion of peroxisome proliferator-activated receptor alpha (PPAR-α), PPAR delta (PPAR-δ), and carnitine palmitoyltransferase 
1a, and decreased the hepatic expression of C-reactive protein of type 2 diabetic rats.

Conclusion: TCLAE alleviates diabetes-induced dyslipidaemia in type 2 diabetic rats by ameliorating the altered expression 
of lipid metabolic genes.
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Introduction
Diabetes mellitus (DM) is a metabolic abnormality majorly charac-
terised by chronic hyperglycaemia, as a result of insulin secretion 
dysfunction by β-cells in the pancreatic islets and/or defects in insu-
lin action on peripheral target tissues. Polydipsia, polyuria and poly-
phagia are some of the accompanying symptoms that result from 
persistent high blood sugar.1 DM presently affects 537 million adults 
worldwide, and 3 of 4 adults in middle- and low-income countries 
live with diabetes. This disease remains as a recurring public health 
challenge, and almost a trillion US dollars have been spent on health 
expenditures. In Africa, 24 million adults (one of 22 adults) pres-
ently have diabetes, and this figure would likely increase by 129% 
(increase to 55 million) in the next 20 years.2 Type 2 diabetes mel-
litus (T2DM) is the most common diabetes that particularly affects 
Sub-Saharan Africa and Nigeria, due to the increase in obesity inci-
dence.1 Cardiovascular disease (CVD) is one of the major diabetic 
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complications that arise in type 2 diabetics, and contributes to diabe-
tes pathophysiology with dyslipidaemia as the driver.3

Insulin plays an important role in glucose homeostasis, lipid 
metabolism, and circulating serum lipids by regulating some of 
the energy-metabolising tissues (liver, adipose, and skeletal mus-
cle tissue), and the transcriptional induction of lipogenic genes 
via the AKT2 phosphorylation of SREBP1 and FOXO1.4,5 During 
T2DM, insulin resistance (IR) and hyperinsulinemia are the pro-
longed features that occur before β-cell destruction and low insulin 
production, causing lipid metabolism dysfunction and dyslipidae-
mia.6 In T2DM, the hepatic regulation of lipid metabolism is im-
paired due to hyperglycaemia and hyperinsulinemia, through the 
increase in de novo lipogenesis,7 overproduction of hepatic low-
density lipoprotein,8 and poor clearance of free fatty acid (FFA) 
and lipoprotein from circulation.9 In addition, the transcription 
factors that activate lipogenic genes are highly expressed during 
T2DM onset and hepatic impairment.7,10 This leads to increased 
citrate translocation into the cytoplasm from the mitochondria, in-
ducing the synthesis of fatty acid to yield fatty acids, triglycerides, 
phospholipids, acylglycerols, ceramides, and other metabolic end 
products.11,12 This tilts the balance between systemic lipid deliv-
ery and uptake, causing hepatic hypertriglyceridemia and exces-
sive lipid species accumulation, while activating pathways that 
progress T2DM.13,14 Furthermore, this alters the hepatic secretory 
and membrane integrity, increasing the plasma concentration of 
hepatic enzymes, which may lead to liver damage.15

T2DM-induced lipogenesis occurs in the adipose, muscles and 
pancreas, with the most effect on the liver, since this affects the 
distribution and production of lipid metabolites.16 This interrupts 
the energy homeostasis via dysfunctional glucose and lipid metab-
olism, interorgan crosstalk disturbance, and hepatic homeostasis 
disruption, which leads to increased toxicant exposure, liver dam-
age, and non-alcoholic fatty liver disease.17,18 Lipid dysfunction 
during T2DM concomitantly induces interleukin-6 and tumour 
necrosis factor-alpha expression, promoting lipolysis, inhibiting 
insulin receptor substrate 1, and downregulating the expression of 
peroxisome proliferator-activated receptors (PPARs).19–21 Clini-
cally prescribed therapies for managing T2DM and preventing 
CVD scourge are becoming less effective, with numerous side ef-
fects. Hence, identifying novel therapeutic strategies that truncate 
dyslipidaemia might be useful in preventing CVD development, 
and further metabolic derangement.22–24 A previous study revealed 
that by improving the impaired antioxidant system and downregu-
lating proinflammatory genes, Terminalia catappa L. palliates 
oxidative stress.25 Thus, this might play a role in dyslipidaemia 
management in T2DM. Hence, the present study determined the 
abrogative role of Terminalia catappa (T. catappa) leaf aqueous 
extract (TCLAE) on diabetes-induced dyslipidaemia in obese dia-
betic (DB) rats, and investigated  some of the hepatic genes in-
volved in lipid metabolism.

Materials and methods

Reagents and chemicals
The streptozotocin (STZ) and one-step EasyScript RT-PCR kit 
were procured from Solarbio Life Sciences (China) and TransGen 
Biotech (China), respectively. The insulin and adiponectin ELISA 
kits were purchased from Solarbio Life Sciences (China) and East-
hangzhou Biopharm (China), respectively. The molecular primers 
and agarose gel were sourced from Integrated DNA Technologies 
(USA) and Sigma Aldrich (Germany), respectively, while the bio-
chemical diagnostic kits were purchased from Randox Laborato-
ries (UK). All other analytical-grade organic chemicals and rea-
gents were purchased from relevant vendors.

Collection, authentication and plant extract preparation
The T. catappa leaves (TCL) were sourced from fruiting trees in 
Covenant University, Ota, Nigeria, which were authenticated and 
specimen deposited (FHI 112775) in FRIN, Nigeria. The aqueous 
crude extract of the leaf (TCLAE) was concocted by concentrating 
the aqueous filtrate using a Stuart RE 300/MS rotary evaporator 
(Staffordshire, UK).26 Then, the leaves were shade dried for two 
weeks, pulverised, macerated (5% w/v) in distilled water for three 
days, and filtered to obtain the aqueous filtrate. The ethical guide-
lines/regulations on plant usage pertinent to local and national ju-
risdictions were adhered to in the present study.

Study animals and determination of dosage
The male Wistar rats (n = 30, 200 ± 20 g, approximately seven 
weeks of age) used for the present study were purchased from the 
University of Lagos Medical College, and acclimatised for two 
weeks before experimentation. Ad libitum provision of food and 
water was put in place with optimal husbandry conditions (hu-
midity, 50 ± 5%; room temperature, 23 ± 2°C; day/night cycle). 
The experimental protocol followed the institutional animal care 
and handling guidelines documented in the National Institutes of 
Health (NIH) and Animal Research: Reporting of In vivo Experi-
ments (ARRIVE) guidelines, and was approved by the Health Re-
search Ethics Committee of Covenant University, with Approval 
no. CHREC/031/2018. The TCLAE dose used for the present 
study was determined, as previously established.27

Diabetes induction and experimental design
T2DM was induced by high-fat feeding (HFD) for eight weeks and 
intraperitoneal injection of STZ (30 mg/kg bw), as previously re-
ported.27 Then, the animals (fasting blood glucose [FBG] ≥250 mg/
dL) were randomly divided into five groups (n = 6, Table 1), and 
orally treated for four weeks. The normal and DB group comprised 
non-DB and DB animals, respectively, and were administered with 
distilled water (1 mL/kg bw). The glibenclamide (GLB), TCLAE4 

Table 1.  Experimental design

Group Animals (Feed) Treatment

Normal Normal rats (Normal fat diet) Distilled water (1 mL/kg bw)

DB Diabetic rats (High fat diet) Distilled water (1 mL/kg bw)

GLB Diabetic rats (High fat diet) Glibenclamide (10 mg/kg bw)

TCLAE4 Diabetic rats (High fat diet) TCLAE (400 mg/kg bw)

TCLAE8 Diabetic rats (High fat diet) TCLAE (800 mg/kg bw)

DB, diabetic; GLB, glibenclamide; TCLAE, T. catappa leaf aqueous extract.
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and TCLAE8 groups comprised of DB rats, and were administered 
with glibenclamide (10 mg/kg bw) and TCLAE (400 and 800 mg/kg 
bw, respectively). The weight and FBG of the animals were moni-
tored throughout the study period. These rats underwent overnight 
fasting for approximately 15 hours before anaesthesia (xylazine/
ketamine 1:10 v/v), and were sacrificed at the end of the experiment.

Sample preparation
The animals were sacrificed using the cardiac puncture method, 
with blood collected in heparinised bottles, and separated into 
erythrocytes and plasma. Then, the hepatic and renal tissues were 
removed, primed and stored, while a section of the excised liver 
was immersed in 10% formal saline for histological evaluation, 
according to a previous procedure.28

Biochemical evaluation
The activity of plasma aspartate aminotransferase (AST), alkaline 
phosphatase (ALP), alanine transaminase (ALT), plasma bilirubin 
(BIL), albumin (ALB), insulin (INS), and glucose (GLUC) was as-
sessed using the Randox diagnostic and Hangzhou Eastbiopharm 
ELISA kits, according to the instruction manual. The plasma glu-
cose area under the curve (AUC) was calculated using Equation 1, 
as described by Sakaguchi et al.29

0 mins 30 mins 60 mins 120 mins

AUC(mg H/dL)
(BG ) (BG 2) (BG 3) (BG ) 2

4

⋅ =
+ × + × + × (1)

Next, the low-density lipoprotein (LDL), cholesterol (CHOL), 
triglyceride (TRIG), and high-density lipoprotein (HDL) concen-
trations were evaluated in the erythrocytes, liver, plasma, and kid-
neys using the Randox diagnostic kit, according to the manual. 
The concentration of adiponectin in plasma was assessed using the 
Solarbio ELISA kit, according to the instructions in the manual. 
The FFA plasma concentration was analysed using the method de-
scribed by Soloni and Sardina.30

Cardiovascular indicators
The HDL/TRIG ratio (HTR) and atherogenic index (AI) were 

evaluated according to the method described by Sheela and Au-
gusti,31 while the coronary risk index (CRI), triglyceride-glucose 
index (TyG), and Disse index were evaluated, as explained by 
Mohammed et al.,32 Liu et al.,33 and Antuna-Puente et al.34 These 
indices were calculated, as follows (Equations 2–6):

High-density lipoprotein cholesterolHTR
Triglyceride

= (2)

Total cholesterol High-density lipoprotein cholesterolAI
High density lipoprotein cholesterol

−
= (3)

Total cholesterolCRI
High-density lipoprotein cholesterol

= (4)

fasting triglycerides fasting glucoseTyG ln
2
×

= (5)

High density lipoprotein cholesterolDisse 12 2.5 FFA
Total cholesterol 

Fasting Insulin

  = × × −    
−

(6)

Gene expression analysis
The total hepatic RNA was extracted using the trizol method be-
fore examining the expression of C-reactive protein (CRP), per-
oxisome proliferator-activated receptor alpha (PPAR-α), carnitine 
palmitoyltransferase 1a (CPT-1a), PPAR delta (PPAR-δ), and adi-
ponectin receptor 2 (AdipoR2), and primers specific to these genes 
and appropriate parameters for the synthesis of cDNA were used, 
with GAPDH as the reference gene (Table 2). The amplicons were 
run on 1.5% agarose gel dyed with ethidium bromide, and viewed 
under the UVP bioimaging system (CA, USA).25

Hepatic histology
The fixed portion of the excised liver was histologically assessed, 
as previously described by Chinedu et al.35 The dehydration of the 

Table 2.  Primer-specific gene sequence and annealing temperature

Gene Primer sequence (5′-3′) Annealing temperature (°C) Reference

PPAR-α AATCCACGAAGCCTACCTGA (F) 58 NM_013196.2

GTCTTCTCAGCCATGCACAA (R)

PPAR-δ AGGCCTCAGGCTTCCACTAC (F) 56 NM_013141.2

TTGCGGTTCTTCTTCTGGAT (R)

CRP TGTCTCTATGCCCACGCTGATG (F) 54 NM_017096.4

GGCCCACCTACTGCAATACTAAAC (R)

CPT-1a AAGTCAACGGCAGAGCAGAG (F) 60 NM_031559.2

ACGCCCAAGTATTCACAGGG (R)

AdipoR2 ACATGCTCCAAGAGATCTCCAG (F) 55 NM_139192.2

GTACTCCAGCTTGGGCGG (R)

GAPDH CTGACATGCCGCCTGAAAC (F) 51 Iheagwam et al.27

CCAGCATCAAAGGTGGAAGAA (R)

AdipoR2, adiponectin receptor 2; CPT-1, carnitine palmitoyltransferase 1; CRP, C-reactive protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PPAR-δ, peroxisome 
proliferator-activated receptor delta; PPAR-α, peroxisome proliferator-activated receptor alpha.
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liver was facilitated by graded ethanol concentration before this 
was cleaned with xylene, infused and immersed in paraffin wax, 
placed on glass slides, sectioned (5 µm), and dyed using the H&E 
stain. Then, the slides were viewed using the Leica SCN 4000 
scanner (Wetzler, Germany). The assessing pathologist was blind-
ed to the grouping of samples, in order to prevent bias.

Statistical analysis of the data
The results were presented as the mean ± standard error of the 
mean (SEM) of six animals after undergoing two-way ANOVA, 
and the mean differences between groups were considered at a 
95% confidence level using Duncan’s multiple range test on the 
SPSS version 25 (IBM, NY, USA).

Results

TCLAE treatment restores abnormal diabetic parameters
The induction of T2DM significantly (p < 0.05) increased the mon-
itored FBG, with a dose-dependent decrease (p < 0.05) observed 
by the 14th day in TCLAE-administered rats, when compared to 
the DB group. On the last day of TCLAE treatment, both doses 
significantly reduced the monitored FBG, when compared to rats 
administered with GLB (Fig. 1). Figure 2 presents austere weight 
loss in DB animals after STZ induction. The DB rats administered 
with TCLAE began to significantly gain weight (p < 0.05) from 
the 14th day, until the 28th day. The most observed weight gain 
effect was after the 800 mg/kg bw TCLAE treatment, when com-

Fig. 1. Effect of TCLAE treatment on the daily fasting blood glucose of T2DM rats. The points refer to the mean ± standard error of the mean (SEM) of 
six animals. The points with different superscripts (a,b,c,d) per day are significantly different, while those with the same superscript are not significantly 
different at 95% CI. DB, diabetic; GLB, glibenclamide; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus; ∧, before induction; *, after 
induction.

Fig. 2. Effect of TCLAE treatment on the body weight of T2DM rats. The bars refer to the mean ± standard error of the mean (SEM) of six animals. The bars with 
different superscripts (a,b,c) per day are significantly different, while those with the same superscript are not significantly different at 95% CI. The same super-
scripts per day refer to no significance at 95% CI. TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus; ^, before induction; *, after induction.
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pared to normal and GLB-treated rats. In Figure 3, the T2DM in-
creased (p < 0.05) the plasma glucose (from 101.42 to 257.06 mg/
dL), INS (from 23.33 to 58.79 mIU/L), and AUC (from 283.65 to 
710.20 mg.H/dL) in the experimental animals. However, the GLB 
and TCLAE treatment (in both experimental doses) reduced (p < 
0.05) the plasma glucose (111.46, 158.51, and 126.32 mg/dL, re-
spectively), INS concentration (45.72, 34.76, and 28.44 mIU/L, 
respectively), and AUC (262.30, 360.75, and 354.35 mg.H/dL, re-
spectively) in DB rats.

Effect of TCLAE treatment on diabetes-induced liver dysfunction
The data in Table 3 illustrates the increase of 11.9% and 259.8% in 

plasma ALT activity and BIL concentration of T2DM rats, respec-
tively, when compared to normal rats. However, the ALT activity 
and BIL concentration significantly decreased in a dose-depend-
ent manner after treatment with TCLAE at 400 mg/kg bw (4.4% 
and 12.7%, respectively) and 800 mg/kg bw (57.4% and 65.3%, 
respectively), when compared to the untreated experimental and 
normal groups. Furthermore, the plasma ALB concentration de-
creased by 13.9% in T2DM rats, but the TCLAE treatment at both 
doses did not change (p > 0.05) this level, when compared to nor-
mal rats. Moreover, the induction of T2DM and TCLAE treatment 
did not alter (p > 0.05) the AST and ALP plasma activity, when 
compared to normal rats.

Table 3.  Effect of TCLAE treatment on liver function parameters in T2DM rats

Normal DB GLB TCLAE4 TCLAE8

ALT (U/I) 112.38 ± 15.53a 125.71 ± 18.47c 118.13 ± 8.74b 120.16 ± 28.28b 109.72 ± 33.59a

AST (U/I) 293.65 ± 25.93 287.12 ± 52.21 304.96 ± 76.47 307.21 ± 72.63 297.93 ± 82.37

ALP (U/I) 525.58 ± 122.51 577.34 ± 190.33 368.26 ± 90.15 607.38 ± 177.17 499.98 ± 154.08

ALB (g/dL) 3.89 ± 0.13b 3.35 ± 0.08a 3.25 ± 0.04a 3.11 ± 0.02a 3.16 ± 0.15a

BIL (mg/L) 0.92 ± 0.36a 3.31 ± 0.85b 1.24 ± 0.25a 1.41 ± 0.26a 1.15 ± 0.26a

The values present the mean ± standard error of the mean (SEM) of six animals. The values with different superscripts (a,b,c) across each row are significantly different, while 
those with the same superscript are not significantly different at 95% CI. ALB, albumin; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate aminotransferase; BIL, 
bilirubin; DB, diabetic; GLB, glibenclamide; T2DM, type 2 diabetes mellitus; TCLAE, T. catappa leaf aqueous extract.

Fig. 3. Effect of TCLAE treatment on the plasma (a) glucose, (b) insulin and (c) glucose area under the curve of T2DM rats. The box plots present the 
mean ± standard error of the mean (SEM) of six animals. The box plots with different superscripts (a,b,c,d) are significantly different, while those with the 
same superscript are not significantly different at 95% CI. DB, diabetic; GLB, glibenclamide; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes 
mellitus.
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Effect of TCLAE treatment on diabetes-induced systemic dys-
lipidaemia
The plasma CHOL, TRIG, HDL-TRIG, LDL-CHOL, LDL-TRIG, 
and FFA concentrations increased (p < 0.05) in untreated DB 
animals, when compared to control animals. After four weeks of 
TCLAE treatment with both experimental dosages, the CHOL, 
HDL-TRIG, LDL-CHOL, LDL-TRIG, and FFA plasma concen-
trations significantly decreased (p < 0.05). The plasma concentra-
tions of TRIG, LDL-CHOL, LDL-TRIG, and FFA in the TCLAE 
groups were comparable (p > 0.05) with those in both the GLB 
and normal groups. Furthermore, an increase (p < 0.05) in plasma 
HDL-C and adiponectin concentration was observed after TCLAE 
treatment, in contrast to the decrease (p < 0.05) induced by the 
diabetes induction (Fig. 4).

Compared to normal rats, the CHOL, TRIG, HDL-TRIG, LDL-
CHOL, and LDL-TRIG concentrations significantly increased (p 
< 0.05) in the liver of untreated DB rats. However, this increase 
was reduced (p < 0.05) by the GLB, TCLAE4 and TCLAE8 in-
tervention, when compared to the untreated group. Furthermore, 
the hepatic LDL-CHOL concentration in the treatment groups was 
comparable (p > 0.05) to that in the normal group (Fig. 5). How-
ever, the diabetes induction and subsequent treatment with GLB, 
TCLAE4 and TCLAE8 did not alter (p > 0.05) the hepatic level of 
HDL-C, when compared to the normal group (Fig. 5).

There were no differences in renal CHOL, TRIG, HDL-CHOL, 
and LDL-CHOL levels in the normal and treatment groups (p > 
0.05). However, the induction of diabetes significantly increased 
(p < 0.05) the renal HDL-TRIG and LDL-TRIG concentrations. 
Furthermore, the GLB and TCLAE treatment induced a reduction 
(p < 0.05) in renal HDL-TRIG and LDL-TRIG concentrations, 
when compared to the respective levels in normal rats (Fig. 6).

The erythrocyte concentration of CHOL, TRIG, HDL-TRIG, 
LDL-CHOL, and LDL-TRIG in untreated DB rats significantly 
increased (p < 0.05), when compared to normal rats. After the 
administration of TCLAE, the erythrocyte CHOL, TRIG, HDL-
TRIG, LDL-CHOL, and LDL-TRIG concentrations decreased 
(p < 0.05), when compared to untreated DB rats. The reduction 
in CHOL, LDL-C and LDL-T erythrocyte concentrations in the 
TCLAE4 and TCLAE8 groups were comparable with the normal 
group (Fig. 7).

Effect of TCLAE treatment on abnormal cardiovascular indices
In Figure 8, the AI, CRI, HTR and TyG significantly increased 
(p < 0.05) in DB rats, when compared to normal rats. After the 
experimental regimen, the indices decreased (p < 0.05) after the 
TCLAE treatment, when compared to the GLB and normal groups, 
especially at the highest dose. Compared to normal rats, the op-
posite was observed for the Disse index, since this significantly 
decreased (p < 0.05) in untreated DB rats. However, this increased 
(p < 0.05) in GLB- and TCLAE-treated rats, when compared to 
DB rats (Fig. 8).

Effect of TCLAE treatment on the diabetes-induced interfer-
ence of gene expression
In Figure 9, the hepatic expression of PPAR-α, PPAR-δ, AdipoR2 
and CPT-1a was downregulated (p < 0.05), while CRP was up-
regulated (p < 0.05), in DB rats, when compared to normal rats. 
After treatment with GLB and TCLAE, the hepatic expression 
of PPAR-α, PPAR-δ, AdipoR2 and CPT-1a was upregulated (p 
< 0.05), while CRP was downregulated (p < 0.05), in DB rats. 
Nonetheless, GLB was unable to change (p > 0.05) the diabetes-
induced alteration in CPT-1a, while the TCLAE treatments non-

significantly increased the AdipoR2 hepatic expression at the high-
est dose.

Effect of TCLAE treatment on altered liver histology
The hepatic histopathology revealed distinct centrioles and hepato-
cytes, with a pyknotic nucleus and well-fenestrated sinusoids in 
the control group (Fig. 10a). The diabetes onset led to the distor-
tion of centrioles, which were surrounded by focal inflammatory 
cells with fatty changes and steatosis (Fig. 10b). In the GLB group, 
a prominent portal vein with mild fatty hydropic change was ob-
served (Fig. 10c). In hepatic tissues obtained from 400 mg/kg bw 
TCLAE-treated rats, moderate inflammation was observed in the 
hepatic lobes (parenchyma) and centrioles, with focal microve-
sicular steatosis and visible fatty changes (Fig. 10d). Furthermore, 
mild Kupffer cell activation, prominent central veins and hepat-
ocytes were observed in hepatic tissues obtained from TCLAE-
treated rats (800 mg/kg bw, Fig. 10e).

Discussion
HFD and intraperitoneal STZ injection can experimentally in-
duce hyperglycaemia and DB metabolic profiles in a manner 
similar to the T2DM clinical progression in humans.36 Signifi-
cant weight loss and hyperglycaemia are usually associated with 
experimental animals. Thus, the improvement in body weight 
and daily fasting blood glucose of DB rats after TCLAE treat-
ment can be attributed to improved glucose homeostasis control 
via increased insulin sensitivity and decreased hyperglycaemia. 
This finding suggests that TCLAE has the potential to improve 
diabetes-related weight defects, and possess hypoglycaemic ac-
tivity, which are the core features of T2DM. Stimulating glucose 
uptake, utilisation and storage through insulin action is critical in 
maintaining optimal glucose levels in blood.37,38 The observed 
increase in blood glucose and plasma INS concentrations is a 
common occurrence in HFD/STZ-induced diabetes, similar to 
the reports of other studies.39–43 The increase in hepatic and ex-
trahepatic INS sensitivity by TCLAE may be responsible for the 
reversal of increased blood glucose and plasma INS, which was 
verified by the decrease in glucose AUC. The increase in ATP 
generation may also be a consequence, leading to the induction 
of insulin’s anabolic effect, in addition to TCLAE’s ability to im-
prove glucose metabolism.44,45

The reduction of plasma ALT activity and plasma BIL concen-
tration in DB rats after TCLAE may be attributed to the radical 
scavenging ability that concomitantly thwarted the lipid peroxi-
dation, and preserved the integrity of the hepatocyte cell wall, in 
order to prevent further leakage of the enzyme.46 A similar find-
ing was previously reported by other studies on STZ-induced DB 
rats.47–49 However, contrary to these present findings, Soliman50 
reported an increase in BIL after treatment with Paracentrotus 
lividus extract. The decrease in plasma ALB levels in untreated 
DB animals further corroborated the decline in body weight, sug-
gesting evidence of tissue wasting. This decline may also be due 
to liver degeneration, since organ pathology has been reported in 
prolonged diabetes.51 The selective GLUT-2 uptake of STZ by 
the liver may also destroy hepatocytes.43 Despite the inability of 
TCLAE to improve the ALB levels, the hepatoprotective prop-
erty of T. catappa in DB rats has been previously reported.52 This 
suggests that the time frame is not enough to restore the liver’s 
synthetic ability, which has been recorded with some medicinal 
plants.53,54

Dyslipidaemia is an accompanying symptom of T2DM onset, 
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Fig. 4. Effect of TCLAE treatment on the plasma (a) cholesterol, (b) triglyceride, (c) HDL-cholesterol, (d) HDL-triglyceride, (e) LDL-cholesterol, (f) LDL-
triglyceride, (g) free fatty acid concentrations, and (h) adiponectin concentrations of T2DM rats. The box plots with different superscripts (a,b,c,d) are 
significantly different, while those with the same superscript are not significantly different at 95% CI. DB, diabetic; GLB, glibenclamide; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus.
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in addition to hyperglycaemia. The inability of tissues to utilise 
blood glucose for energy purposes can lead to the use of fatty 
acids for energy generation.55 The increase in concentration 
of plasma and organ CHOL, TRIG, LDL-CHOL, HDL-TRIG, 
LDL-TRIG and FFA, with the concomitant decrease in HDL-
CHOL after the induction of T2DM using STZ/HFD in the pre-
sent study, was synonymous with the findings reported by Xu et 
al.56 and Alam et al.57 This occurrence was due to the increase 
in catabolism of peripheral fat depots, which led to the upsurge 
in the mobilisation of FFA from adipose tissues, with the con-
comitant accumulation of excess fatty acids in the liver, and the 
subsequent conversion to triglycerides.54 In the normal systemic 

maintenance of intermediary metabolism, insulin activates lipo-
protein lipase, which is an enzyme responsible for the removal 
and degradation of circulatory TRIG. However, when defects 
in insulin action or secretion arise during DB conditions, this 
enzyme is inactivated, inducing the continuous action of HMG-
CoA reductase, extracellular lipolytic hormones, and lipases 
on fat depots without inhibition.58 These actions lead to a high 
concentration of fatty acid in blood, stimulating hepatic CHOL, 
TRIG, and phospholipid synthesis.55,59 The resultant observa-
tion is the discharge of these formed macromolecules (CHOL, 
TRIG, and phospholipid) in blood, with hypercholesterolemia, 
hypertriglyceridemia, and hyperlipidaemia as the concomitant 

Fig. 5. Effect of TCLAE treatment on the hepatic (a) cholesterol, (b) triglyceride, (c) HDL-cholesterol, (d) HDL-triglyceride, (e) LDL-cholesterol, and (f) LDL-
triglyceride concentrations of T2DM rats. The box plots with different superscripts (a,b,c) are significantly different, while those with the same superscript 
are not significantly different at 95% CI. Box plots with similar superscripts refer to the significant difference at 95% CI. DB, diabetic; GLB, glibenclamide; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus.
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conditions.60 Advanced glycosylated end products usually occur 
in unregulated hyperglycaemia. The accelerated systemic for-
mation has been attributed to the reduction in HDL-CHOL.54 
The observed decrease in these biomarkers of dyslipidaemia by 
TCLAE can also be attributed to the presence of flavonoids and 
phenolics, which have been identified to inhibit CHOL and bile 
synthesis.50 The inhibition of lipolytic enzymes, and key CHOL 
and TRIG synthesis enzymes, the reversal of IR, proper energy 
metabolic control, and reversing hyperinsulinemia are other 
mechanisms by which the hypolipidaemic effect of TCLAE was 
attained.50,61

Hyperinsulinemia plays a role in T2DM dyslipidaemia at the 
molecular level via TRIG hydrolysis inhibition and acetyl CoA 

carboxylase activation, thereby increasing malonyl CoA produc-
tion. The malonyl CoA in the subsequent reactions inhibited the 
CPT-1 expression, hindering the mitochondria fatty acid transfer 
from undergoing β-oxidation, and causing hepatic cytosolic ac-
cumulation and increased circulation of FFA, as observed in the 
present study.42 The accumulation of FFA aggravates IR, and in-
duces lipotoxicity and steatosis, in addition to the upregulation of 
the CRP gene expression in the liver. This induces proinflamma-
tion, and inhibits the expression of PPAR-α and PPAR-δ, which 
further truncates the regulation of CPT-1, as observed in the pre-
sent study.62,63 The upregulation of CPT-1a, PPAR-α, and PPAR-δ 
genes by TCLAE in the liver might imply the improvement of he-
patic fatty acid oxidation regulation, and the decrease in circulat-

Fig. 6. Effect of TCLAE treatment on the renal (a) cholesterol, (b) triglyceride, (c) HDL-cholesterol, (d) HDL-triglyceride, (e) LDL-cholesterol, and (f) LDL-
triglyceride concentrations of T2DM rats. The box plots ppresent the mean ± standard error of the mean (SEM) of six animals. The box plots with different 
superscripts (a,b) are significantly different, while those with the same superscript are not significantly different at 95% CI. DB, diabetic; GLB, glibenclamide; 
HDL, high-density lipoprotein; LDL, low-density lipoprotein; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus.

https://doi.org/10.14218/GE.2023.00053


DOI: 10.14218/GE.2023.00053  |  Volume 22 Issue 3, September 2023176

Iheagwam F.N. et al: TCLAE antidyslipidaemic role in diabetic ratsGene Expr

ing FFA observed in the present study, which is similar to other re-
ports.64–66 Hence, increasing the mitochondrial fatty acid transfer 
and desaturation pathway of fatty acid might be the biomolecular 
hypolipidaemic mechanism of TCLAE, which induced fatty acid 
uptake, trafficking and esterification in DB rats, as observed in a 
previous study.67

The cardiovascular indices viz., AI, HTR and CRI were con-
sistent with the lipid profile results, in which dyslipidaemia was 
abrogated after TCLAE intervention. These cardiovascular indi-
ces are of great importance in evaluating the predisposition of 
diabetics to developing diabetes-related secondary cardiovascu-
lar complications. Patients with increased cardiovascular indices 

are prone to developing various cardiovascular complications, as 
observed in previous studies.54,68 The return of these indices to 
normal levels may be due to the increase in HDL levels, prevent-
ing the continuous deposition of cholesterol in the circulatory 
system, and thereby reducing the risk of atherosclerosis.38 The 
increase in hepatic AdipoR2 expression can be hypothesised to 
induce hepatic fatty acid oxidation, and enhance glucose uptake. 
This was further corroborated by the ability of TCLAE to in-
crease circulating adiponectin in the present study. This suggests 
that the increase in TCLAE treatment duration might have further 
induced the expression of AdipoR2. These findings are in tandem 
with those of previous studies that reported a decrease in adi-

Fig. 7. Effect of TCLAE treatment on the erythrocytes (a) cholesterol, (b) triglyceride, (c) HDL-cholesterol, (d) HDL-triglyceride, (e) LDL-cholesterol, and 
(f) LDL-triglyceride concentrations of T2DM rats. The box plots present the mean ± standard error of the mean (SEM) of six animals. The box plots with 
different superscripts (a,b,c) are significantly different, while those with the same superscript are not significantly different at 95% CI. DB, diabetic; GLB, 
glibenclamide; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus.
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ponectin and its AdipoR2 gene in DB patients and models,15,69–72 
since reduced plasma adiponectin concentration and AdipoR2 
hepatic expression indicates increased triglyceride concentration 
and lipid oxidation in peripheral tissues.69,73 The increase in ex-
pression of hepatic CRP in diabetics signifies not only chronic 
subclinical inflammation and diabetic induced-dyslipidaemia, 
but also endothelial dysfunction and vascular remodelling, as re-
ported by other studies.74–76 The elevated level of hepatic CRP 
expression in diabetic rats might be due to the increased circula-
tion of blood glucose, adipokines and FFA concentration, sig-
nifying the T2DM progression.77 The reduction in hepatic CRP 

expression in TCLAE-treated animals further authenticates its 
hypoglycaemic and dyslipidaemic abrogative properties, since 
hepatocytes release very low amounts of CRP under normal con-
ditions.78,79

The histopathological reports further lend credence to the re-
sults of the present study, since TCLAE remarkably improved the 
architectural structure of hepatic cells by clearing the diabetes-
induced fatty alterations and steatosis, thereby reducing diabetic 
complications.43 Furthermore, TCLAE was able to improve the 
STZ-induced pathological damage caused by the induction of 
Kupfer and mononuclear cell activation, corroborating the ob-

Fig. 8. Effect of TCLAE treatment on the (a) cardiovascular and (b) Disse indices of T2DM rats. The bars and box plots present the mean ± standard error 
of the mean (SEM) of six animals. The box plots and bars on each index with different superscripts (a,b,c,d) are significantly different, while those with the 
same superscript are not significantly different at 95% CI. AI, atherogenic index; CRI, coronary risk index; HTR, HDL/TRIG ratio; TCLAE, T. catappa leaf aque-
ous extract; TyG, triglyceride-glucose index; T2DM, type 2 diabetes mellitus.
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Fig. 9. Effect of TCLAE treatment on the hepatic expression of (a) PPAR-α, (b) PPAR-δ, (c) AdipoR2, (d) CPT-1a, and (e) CRP genes in T2DM rats.  The bars present 
the mean ± standard error of the mean (SEM) of six animals. The bars with different superscripts (a,b,c) are significantly different, while those with the same su-
perscript are not significantly different at 95% CI. CPT-1, carnitine palmitoyltransferase 1; CRP, C-reactive protein; DB, diabetic; GLB, glibenclamide; GAPDH, glycer-
aldehyde-3-phosphate dehydrogenase; TCLAE, T. catappa leaf aqueous extract; T2DM, type 2 diabetes mellitus; PPAR, peroxisome proliferator-activated receptor.
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served antidiabetic effect and hepatic CRP downregulation by 
the extract. These cells have been reported to work synergisti-
cally and efficiently in the capture and phagocytosis of targeted 
damaged cell components, which is important for liver regenera-
tion.80,81

Conclusion
In conclusion, TCLAE abrogates dyslipidaemia in T2DM diabetic 
rats to improve dysregulated lipid metabolism. This was achieved 
by upregulating PPAR-α, PPAR-δ, CPT-1a, and AdipoR2, while 
downregulating CRP genes in the liver. This molecular effect 
reduces circulating FFA, hepatic proinflammation, and lipid ac-
cumulation, while increasing adiponectin levels, concomitantly 
activating β-oxidation, alleviating dyslipidaemic downstream pro-
cesses, and inducing triglyceride hydrolysis and clearance (Fig. 
11). Hence, TCLAE may be used as an adjuvant to ameliorate 
diabetes-induced hyperlipidaemia, and its associated complica-
tions. Some of the limitations of the present study were the lack of 
lipid metabolic gene protein expression assessment, and TCLAE 
bioactive(s) identification. Further studies need to be conducted 
to standardise the crude extract and isolate bioactive principles, 
allowing for its further development for therapeutic use in the 
clinic. In addition, the evaluation of the protein expression of more 
lipid metabolic genes might reveal a new molecular mechanism, 
through which TCLAE may modulate diabetes-induced dyslipi-
daemia in type 2 DB rats.
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